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Quantum kinetic equation in weak turbulence
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The quantum kinetic equation used in the study of weak turbulence is reconsidered in the context
of a theory with a generic quartic interaction. The expectation value of the time derivative of the
mode number operators is computed in a perturbation expansion that places the large diagonal
component of the quartic term in the unperturbed Hamiltonian. Although one is not perturbing
around a free field theory, the calculation is easily tractable owing to the fact that the unperturbed
Hamiltonian can be written solely in terms of the mode number operators.
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I. INTRODUCTION

In one approach to the statistical description of weak
turbulence, a central role is played by the kinetic wave
equation [1,2]. This equation for the time derivative of
the mode numbers has been derived for both classical and
quantum systems in a perturbation series by expanding
about a free field (harmonic oscillator) theory. In this
paper, we will reconsider this derivation for a quantum
mechanical system whose Hamiltonian is a sum of generic
quadratic and quartic terms. Owur perturbation expan-
sion will perturb around an operator that contains the
diagonal component of the quartic term together with
the usual quadratic, or free field, component. Since one
is interested in the expectation values of fields between
states with large mode numbers, it is sensible to include
as much of these in the unperturbed Hamiltonian as the
calculation permits. We do not need to assume that the
coupling to all the quartic terms in the Hamiltonian is
small; the diagonal part can be arbitrarily large in our
approach.

We begin in the following section with a precise state-
ment of the theory under consideration and an encap-
sulation of the interaction picture used to carry out the
derivation of the quantum kinetic equation. At this or-
der, the largest terms are cubic in the mode numbers
and these we calculate explicitly. We will find some ad-
ditional terms not present in another derivation of the
quantum kinetic equation [1] and then go on to consider
under what conditions one might expect those corrections
to be small. A discussion of stationary solutions to the
kinetic equation then follows.
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II. THE QUANTUM KINETIC EQUATION

Let us consider a quantum mechanical system based
on the Hamiltonian
H:Z wkaz ap + Z Tk1k2k3k4 allazzakaaku (1)

k pyeesks

which contains generic quadratic and quartic terms; the
number d of spatial dimensions in which the system
evolves is arbitrary. The free field oscillator energies wy,
are assumed given and constitute part of the specification
of the system. The function T, k4%, includes, by defini-
tion, the momentum conserving factor dx, 4, ks +k, (POth
the vector k; and the § function should be understood as
d-dimensional quantities). Beyond the implicit symme-
try properties, which are that Ty, k,kk, is symmetric in
the first two and last two indices and that under com-
plex conjugation Tl:1k2kak4 = Tkykyki ks, this coefficient
may contain further momentum dependence, which we
will otherwise not restrict in the derivation of the kinetic
equation. As usual, az and af in Eq. (1) denote Bose
creation and annihilation operators and obey the com-
mutation relation

[ak,a]] = 0k, - (2)

It is convenient to use the number operator ny = a}; ag
for each mode in our system. The states that diagonal-
ize these number operators satisfy [3] fig|ng) = ni |nk),
ar |ng) = /nk |nk — 1), and ‘IL [ng) = Vnk + 1|nk + 1)
and are clearly labeled by their eigenvalues.

A perturbation series (see [3] for a thorough exposi-
tion) begins by splitting the Hamiltonian into an unper-
turbed component Hy and a “small” component H;. In
our approach, we will place the diagonal of the quar-
tic component in the unperturbed sector, so that H =
HO + Hl, Wlth
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HO:Z(wk_sz)ﬁk+2ZTklﬁkﬁla (3)
k k,l
Hy = Z T'il kakaks a};l azz Ak Ak,
ki,....ka

and where we have introduced the notation Ty = Tkxik,
Tri = Trirt, and

Tykaksks if k1 # k3 or kg
T1:1k2ksk4 = {0 e otherwise. (4)

We can express this equivalently as
Ty kaksks = (1 — Ohyks Oksks — Okyks Oksks

+6k1k2 5k1k3 5k2k4) Tk1k2k3k4 . (5)

It is important to emphasize that we need not assume
that the coefficient functions Tj; be small, as they are
part of the unperturbed Hamiltonian. The validity of the
perturbation expansion depends, however on 7, ,:1 koksks
being small relative to the mode numbers.

In the Heisenberg representation of quantum mechan-
ics, operators are time dependent while the states are
time independent. Given some operator A, its time evo-
lution as a Heisenberg operator Ay (t) satisfies

& An(t) =i [H, An (1) (©)

and one may equivalently write this as Ag(t) =
exp[tHt] Ag(0) exp[—iHt]. Any expectation value in
this representation therefore satisfies

3 @ an )19 = (0] Lan) |w,)
— (Wi i[H, An(®)] %), (7)

since the states |¥,) are independent of t. We are inter-
ested in the case A = 7y for large ¢t and we will compute

Jim (] i[H, A (2)] ) (®)

for some state |¥), which we will later specify. This is
the precise meaning we ascribe to the time derivative of
the mode number appearing in other presentations [1, 2]
of the kinetic wave equation.

For the purposes of perturbation theory, one moves to
the interaction picture where the following relations hold:

(U1]|Om ()[¥2) = (¥1(8)|O1(2)| W2 (1)), (9)
|, (t)) =expli Hot] exp[—i H (t —t')]
x exp[—i Ho t']|To(t')) ,

Op(t) = expli Ho (t — t")]Or(t')
x exp[—i Ho (t — t')]

for all operators O and all states |¥,). Interestingly, the
time evolution of the operators aLI and ars in this model
is very simple in spite of the fact that they do not evolve
via a free field Hamiltonian. It is not difficult to first

show that

[ak, HO] = (wk +4Z T ’fll> a , (10)
l

and using this one can quickly prove
arr(t) = expli Ho t] arr(0) exp[—i Hot] (11)

akI(O)

= exp |:—1:t ((Uk + 4 Z 4% ﬁl)

l
=ak1(0) exp I:—it (wk —4T, + 4 Z Tyt 'fll)]
1

The combination of operators in the second line of (9)
is conveniently denoted by

U(t,t') = expli Hot] exp[—i H (t — t')] exp[—i Ho t']

t
=1-—i/ drHy (1) U(r,t).
t’

(12)

To lowest order in the interaction H;, we just set
U(r,t') = 1 on the right hand side of Eq. (12). Our
goal is to compute

<%ﬁ,k> = lim (@ (-1)| U'(t, -t)
xOr(t) U(t, —t) |\II(—'t)> ’ (13)

where O = i[Hy,7ni] . We should emphasize that the
states on both sides of this expectation value are in states
in the sense of scattering theory as both are at —oo.

Noticing that Hy commutes with 7z, the computation
of Eq. (13) to the lowest order in perturbation theory
reduces to

lim <\IJ(—t)

t—roo

i[Hy1(t), 7or]

+/_tt [[F1r(2), k], Hur(r)] dr [ (=) . (14)

We assume that the state |¥(—o0)) is an eigenstate of
the number operators ng. It is not difficult to show that
the first order term in (14) does not contribute; to see
this one simply computes

- / Tt
[H1,N] =2 E (Tkl,k2,k3k ay, Gy, Gks Ok
ki,k2,k3

_Tlilkkzka a;;:l llL ak2 aka) * (15)

When we take this between the same states, there is no
way to pair the creation and annihilation operators as 7"
is off diagonal and hence the first term in (14) manifestly
vanishes. However, we should point out that this term
would also vanish even if we had not subtracted out the
diagonal and had instead made the normal perturbative
expansion around the quadratic term in H; the cancel-
lation would then involve a mixing of both terms in Eq.
(15).

One of the ingredients needed in this computation is
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the expectation value
T4t Tt
<ak1 Ay, Ckg Aky O Qp, Al al4> ) (16)

where ky or ko # k3 or kg, and l; or l; # I3 or ly. The
states on both sides are identical and are eigenstates of
all the number operators. A simple computation yields

(1, + 1) Ny [(Oty ks Otakes + Oty ks Otykes) (M1, + 1)

_51112 511’“3 6l2k4 nlz]
X[((Slﬂkl 614’“2 + 613’02 6l4k1) ni,

—01514 Otgky Otsky (mu, +1)] - (17)

We should note that it is not sufficient for the purposes
of our calculation, even working in the large-n; limit,
to keep only the most dominant terms in the above ex-
pression, which are fourth order in these mode numbers.
When this expression is used in our calculation, we will
see that the fourth-order terms cancel and the next to
leading-order terms remain. For this reason we have been
careful to take account of the possibility that [; equals
l2, and so on, in this expectation value; no assumptions
(e.g., random phase approximation; see [1]) have been
made in obtaining the expression in (17).

It is straightforward, though rather tedious, to assem-
ble the above pieces, and the tree level expression for the
quantity in (13) is found to be

d
(™

7 >:87‘( Z |Tlilk2k3klz a(kl,k27k37k)

ki,k2,k3
x[s3(k1, k2, k3, k) + s2(k1, k2, k3, k)
+s1(k1, k2, k3, k) |

(18)

with the functions s, (k1, k2, k3, k) given by

83 =4 (Nky Nky Mhey + Nkey Ny Nk
— Ny Ty Tk — Nky Ty Tk)
—2 Opyky (Tky Tky kg + Tokey Tk, k)
+2 Onyre (T, Moy T + Tk Ty k)
(19)
Sg = 4 (’rLk1 Ny — Ny Nk )
—2 Ok ky (Mg Mkey + Nokey M + T, Mkey)
+2 Oror (N, kg + Tkg Nk + Nkey M)

s1=—-2 6k1k2 ng, + 2 6k3k Mg

For large values of the mode numbers, the s3 term that is
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cubic in those variables will dominate. The energy con-
serving delta function 8(kq, k2, k3, k), which arose from
an integration over 7, is given by

) (u}kl + wg, — Wk — Wk

+4 > (Tt + Trgt = Tt — Tia) 1u
]
+4 (Tk3 + Th 4 Thyky + Thsk

= Trk — Tk — Thyks “'Tkzka)) (20)

It is obtained by moving the 7 operator dependence en-
tirely to either the left or the right, where it becomes a
normal function of 7 after acting on the states, and then

using the representation fj:: e’ dr = 27 §(z). This
rather asymmetric looking expression can be recast as,

5< (wkl - 2Tk1) + (wkz - 2Tk2)

— (Wky — 2Tky) — (Wi — 2T%)
+2 " (Tuyt + Thyt — Thgt — Tia)
]

X (271 + Oky1 + Oyt — Okst — Ok1) ) (21)
If we define an effective energy per state by
em =Wm = 2T +2 D Tt (27 + b1yt
]
+8ky1 — Okst — Ort), (22)
then the § function can be written most simply as
O0(Epy, +€Exy —Eky — €K ) - (23)

The exact expression for €, given above is greatly sim-
plified in the large-n; situation in which we work, so that

Em N Wy, +4 Z Tr .
]

(24)

Let us emphasize that the leading-order terms that are
cubic in the mode numbers in (18) do not fully agree with
the expressions found in [1, 2]; our leading-order terms
can be written as

d 111 1
<;ft"’“> =87 > | Thykakorl” 0( ek + ks — Eka — €k )70k, My Tty Tk [4 (nTg, ne  na el )
ki1,k2,ks
11 1 1
~2 Oy ky <_+7)+26k3k <_ ) , (25)
Ny Tk Mgy Nk,
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with &, given by Eq. (24). One clear difference in our
result concerns the last two terms in (25), which are not
present in [1,2]; these would still be there in our analysis
even if we had perturbed around the quadratic term in
H. In fact, further diagonal terms would presumeably
be present as well, but these we have accounted for by
incorporating them into Hy. This discrepancy will be dis-
cussed in the following section. The other clear difference
is due to our different perturbation expansion, which re-
sults in the é§ function involving the effective energy e
rather than wy.

III. STATIONARY SOLUTIONS

The analysis of stationary solutions to the kinetic equa-
tion in the usual perturbative version can be found in [1,
2]. In that analysis, the extra terms we found in (25) are
not considered and they analyze the condition

0= [Tuikokorl® S(wr, + wi, — wiy —wi) (26)
i kz ks

1 1 1 1
XMy My Nky Tk —_— -
Ny W’ Ny Nk,

The question therefore arises as to whether the other
terms in Eq. (25), which are also cubic in the mode
numbers, are small relative to the others. In this regard,
it is noteworthy that the additional terms involve one
less sum over momentum space. So if the terms in the
summation are large over some reasonable domain in mo-
mentum space, then those factors will be suppressed by
roughly the volume of that domain. Our calculation thus
far has assumed that at least some of the mode num-
bers are large compared to unity and neglecting these
additional two terms amounts to some kind of additional
condition such as the one just suggested. One might in-
stead entertain a more restricted class of the Tl:1kzksk4
coefficient such that the additional terms vanish identi-
cally; perhaps this might be natural in the context of
vortex dynamics. For example, it could contain the fac-
tor |ky — k2|7|ks — k4| for o > 0. We will not consider
this issue further here and will proceed to consider the
stationary solutions to Eq. (25), assuming that the last
two terms can be neglected.

Following the analysis in the usual perturbative expan-
sion [1, 2], one solution for the occupation numbers n,,
is given by

T

B+ Em
where T and p are constants; this is the large-T' limit of
the usual thermodynamic distribution {exp[(ex+pu)/T]—
1)}~ [3] for noninteracting bosons. The difference in our
case is simply that the effective energy ¢,, enters rather
than w,,. Given the precise form of this effective energy,
we see that Eq. (27) is in fact a self-contained integral
equation for n,,, but we will not analyze it further here.

While the preceding analysis can be carried out equally
well in terms of discrete momenta and sums (which we
have done) and continuous variables with integrals, the

Mim

(27)

examination of the Kolmogorov solutions requires the
later setting. The only care in going over to integral
expressions is in correctly treating §-function factors. It
is generally the case that the perturbative expansion we
have considered will contain a factor of §(0), which must
be factored out and discarded, and it is therefore con-
venient now to take the Tk, k x5k, coefficient without the
momentum conserving § function §(@ (k1+ka—ks—k) we
previously included so that the integral equivalent of Eq.
(25) has only a single momentum-conserving § function.

One way to establish the Kolmogorov solutions is to
follow the presentation in [1, 2], substituting the effective
energy €,, for the free field energy w,,. This entails a
number of assumptions. We will assume that the the-
ory has rotational symmetry, which implies, in partic-
ular, that the mode number n;, = n(k) and the effec-
tive energy £, = e(k) depend only on the magnitude of
the vector k. We further suppose that the scaling prop-
erties e(Ak) = A*e(k) and T'(Ak1, A k2, Ak3, Aky) =
A8 T'(ky,ky, k3, kq) are satisfied and that the functional
relation e(k) is invertible. Without loss of generality, we
can take £(0) = 0 by adjusting, say, the w(0) coefficient if
necessary. Given these assumptions, we will show that a
solution exists of the form n(k) = n(e) = e~ (repeated
use of the symbol n for two different functions should
cause no confusion; we will always regard the mode num-
bers as functions of the effective energy in the following).

Let us begin by integrating over angles in (25); the
volume element is d%k; = kf_l dk; dS); and it should be
clear from the context whether we use the symbol k; to
denote a vector or its magnitude. Using the assumption
that we can invert the relationship (k), we can change
variables in the remaining integrals from k; to ;. It is
convenient to first define

~1 | dey de, deg de )\

U(€17827837 E) = (kl kz k3 k)d dkl dkz d—k:’?ﬂ; ( 8)

X/ |T£1k2k3k|2

x 8@ (ky + kg — ks — k) d; d2 dQ5

where we are integrating over three sets of angular vari-
ables. Let us note that U shares the same symmetry
properties as the coefficient 7" under permutations of its
arguments. Our task now is to find solutions to

oo
O=/ deydeadesz Uley,e2,e3,€) 6(e1 + €2 — €3 — €)
0

1 1 1
! } . (29)
Ny N YR Nk,

It is straightforward to work out the scaling properties
of U that are implied by the assumptions. By simply
scaling each of the momenta on both sides of the defining
equation, one quickly finds the relation

XNk, Nk, Ny Nk {

U(Aer,Aea, Aes, Ae) =AY Uleq, e2,€3,¢) , (30)
_3d+28
«a

Returning to the analysis of Eq. (29), one easily uses
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the § function to carry out the £3 integral; what remains
is a region D of the (e1,€2) plane. This region is not the
entire first quadrant since we must satisfy the condition

ez =¢€1+e2—e>0 . (31)

Divide D into four sectors as follows:

Dy ={(e1,e2) €D | e1 <&, e3<e}, (32)
Dy ={(e1,e2) €D | e1 >, ez >¢},
Ds={(e1,e2) €D | e1 <e, ez >¢},
Dy={(e1,e2) €D | &1 >, ez <¢}

O:/ deydey Uey,e2,61 + €2 —€,€) [e182 (61 + &2
D,

x{(61+52——e)”"+6’-—5f——eg}{l—k( -

with y = 3z — v — 3. We can satisfy this relation at the
four points =0, x =1, y = 0, or y = 1. The first two
cases are simply limits of the thermodynamic distribu-
tion previously considered, while the last two possibilities
correspond to the Kolmogorov solutions

nW(e) = Cy e~ (OFI/3 n®(g) = Cpe”OFD/3 (35)

Although the form of these solutions is the same as in the
usual perturbative analysis, they differ fundamentally in
that they are in fact integral equations for n(e), owing to
Eq. (24); we will not pursue an analysis of them here.

IV. CONCLUDING REMARKS

In this paper we have established a different perturba-
tive expansion that leads to a quantum kinetic equation,
similar to the usual one obtained by expanding about a

—e)el™®

and perform the Zakharov transformations [2, 4] to map
D3, D3, and D4 onto Dy. Those transformations D5, D3,
and Dy, respectively take the form

! '
€€ €e
1
€1 = 7 7 ’ €2 = = /2 ) (33)
€1 +eyg—¢€ € +éey —¢€
e(el +eh—¢) e?
&1 = ————» €2 = — 3
€l €l
g2 el +e5 —¢
_ _ 1 2
€1 = =7 €2 = — 7 ——
€1 €1

Using these transformations and the ansatz n(e) =
Ce™®, one finds that Eq. (29) becomes

(34)

€1+ €2

@)}

[

quadratic Hamiltonian. By placing the diagonal quartic
terms into the unperturbed Hamiltonian, we have gen-
eralized that equation and identified the effective state
energy, which essentially takes the place of the free field
energy in those earlier treatments. The framework we es-
tablish applies as well to the usual perturbative situation
and can be considered as an alternative to other deriva-
tions. We have also highlighted some subtleties that arise
there in the leading-order terms cubic in the mode num-
bers and have offered an argument why one might expect
those additional corrections to be small.

ACKNOWLEDGMENTS

We would like to thank A. Newell for many discussions
on weak turbulence. The work of S.S. is partly supported
by Forbairt Contract No. SC/94/218.

[1] V.E. Zakharov, V.S. L’vov, and G. Falkovich, Kolmogorov
Spectra of Turbulence I (Springer-Verlag, Berlin, 1992).

[2] S. Dyachenko, A.C. Newell, A. Pushkarev, and V.E. Za-
kharov, Physica D 57, 96 (1992).

[3] A. Fetter and J. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971).

[4] V.E. Zakharov, Zh. Eksp. Teor. Fiz 51, 688 (1966) [Sov.
Phys. JETP 24, 455 (1967)]; 62, 1745 (1972); 35, 908
(1972).



